104 research outputs found

    Detection of methylation in the CpG islands of the p16INK4A, RASSF 1A and methylguanine methyltransferase gene promoters in pancreatic adenocarcinoma

    Get PDF
    Pancreatic cancer consists of an accumulation of genetic and epigenetic alterations. Recently, aberrant methylation of CpG islands of cancer-related genes has emerged as an important epigenetic mechanism of their transcriptional dysregulation during tumour development [1]. Therefore, new diagnostic methods, for early detection based on a better understanding of the molecular biology of pancreatic cancer, are required. We examined the methylation status of p16INK4A, RASSF 1A and methylguanine methyltransferase (MGMT) genes considered to be inactivated by promoter methylation in several tumours

    Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine

    Get PDF
    Ribonucleotide reductase subunits M1 (RRM1) and M2 (RRM2) are involved in the metabolism of gemcitabine (2′,2′-difluorodeoxycytidine), which is used for the treatment of nonsmall cell lung cancer. The mRNA expression of RRM1 and RRM2 in tumours from lung adenocarcinoma patients treated with docetaxel/gemcitabine was assessed and the results correlated with clinical outcome. RMM1 and RMM2 mRNA levels were determined by quantitative real-time PCR in primary tumours of previously untreated patients with advanced lung adenocarcinoma who were subsequently treated with docetaxel/gemcitabine. Amplification was successful in 42 (79%) of 53 enrolled patients. Low levels of RRM2 mRNA were associated with response to treatment (P< 0.001). Patients with the lowest expression levels of RRM1 had a significantly longer time to progression (P=0.044) and overall survival (P=0.02) than patients with the highest levels. Patients with low levels of both RRM1 and RRM2 had a significantly higher response rate (60 vs 14.2%; P=0.049), time to progression (9.9 vs 2.3 months; P=0.003) and overall survival (15.4 vs 3.6; P=0.031) than patients with high levels of both RRM1 and RRM2. Ribonucleotide reductase subunit M1 and RRM2 mRNA expression in lung adenocarcinoma tumours is associated with clinical outcome to docetaxel/gemcitabine. Prospective studies are warranted to evaluate the role of these markers in tailoring chemotherapy

    Tumor BRCA1, RRM1 and RRM2 mRNA Expression Levels and Clinical Response to First-Line Gemcitabine plus Docetaxel in Non-Small-Cell Lung Cancer Patients

    Get PDF
    Overexpression of RRM1 and RRM2 has been associated with gemcitabine resistance. BRCA1 overexpression increases sensitivity to paclitaxel and docetaxel. We have retrospectively examined the effect of RRM1, RRM2 and BRCA1 expression on outcome to gemcitabine plus docetaxel in advanced non-small-cell lung cancer (NSCLC) patients. = 0.001). Low BRCA1 expression was the only factor significantly associated with longer time to progression in 31 patients receiving cisplatin-based second-line therapy.The mRNA expression of BRCA1, RRM1 and RRM2 is potentially a useful tool for selecting NSCLC patients for individualized chemotherapy and warrants further investigation in prospective studies

    Customized Treatment in Non-Small-Cell Lung Cancer Based on EGFR Mutations and BRCA1 mRNA Expression

    Get PDF
    BACKGROUND: Median survival is 10 months and 2-year survival is 20% in metastatic non-small-cell lung cancer (NSCLC) treated with platinum-based chemotherapy. A small fraction of non-squamous cell lung cancers harbor EGFR mutations, with improved outcome to gefitinib and erlotinib. Experimental evidence suggests that BRCA1 overexpression enhances sensitivity to docetaxel and resistance to cisplatin. RAP80 and Abraxas are interacting proteins that form complexes with BRCA1 and could modulate the effect of BRCA1. In order to further examine the effect of EGFR mutations and BRCA1 mRNA levels on outcome in advanced NSCLC, we performed a prospective non-randomized phase II clinical trial, testing the hypothesis that customized therapy would confer improved outcome over non-customized therapy. In an exploratory analysis, we also examined the effect of RAP80 and Abraxas mRNA levels. METHODOLOGY/PRINCIPAL FINDINGS: We treated 123 metastatic non-squamous cell lung carcinoma patients using a customized approach. RNA and DNA were isolated from microdissected specimens from paraffin-embedded tumor tissue. Patients with EGFR mutations received erlotinib, and those without EGFR mutations received chemotherapy with or without cisplatin based on their BRCA1 mRNA levels: low, cisplatin plus gemcitabine; intermediate, cisplatin plus docetaxel; high, docetaxel alone. An exploratory analysis examined RAP80 and Abraxas expression. Median survival exceeded 28 months for 12 patients with EGFR mutations, and was 11 months for 38 patients with low BRCA1, 9 months for 40 patients with intermediate BRCA1, and 11 months for 33 patients with high BRCA1. Two-year survival was 73.3%, 41.2%, 15.6% and 0%, respectively. Median survival was influenced by RAP80 expression in the three BRCA1 groups. For example, for patients with both low BRCA1 and low RAP80, median survival exceeded 26 months. RAP80 was a significant factor for survival in patients treated according to BRCA1 levels (hazard ratio, 1.3 [95% CI, 1-1.7]; P = 0.05). CONCLUSIONS/SIGNIFICANCE: Chemotherapy customized according to BRCA1 expression levels is associated with excellent median and 2-year survival for some subsets of NSCLC patients , and RAP80 could play a crucial modulating effect on this model of customized chemotherapy. TRIAL REGISTRATION: (ClinicalTrials.gov) NCT00883480

    DNA Methylation-Independent Reversion of Gemcitabine Resistance by Hydralazine in Cervical Cancer Cells

    Get PDF
    BACKGROUND: Down regulation of genes coding for nucleoside transporters and drug metabolism responsible for uptake and metabolic activation of the nucleoside gemcitabine is related with acquired tumor resistance against this agent. Hydralazine has been shown to reverse doxorubicin resistance in a model of breast cancer. Here we wanted to investigate whether epigenetic mechanisms are responsible for acquiring resistance to gemcitabine and if hydralazine could restore gemcitabine sensitivity in cervical cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: The cervical cancer cell line CaLo cell line was cultured in the presence of increasing concentrations of gemcitabine. Down-regulation of hENT1 & dCK genes was observed in the resistant cells (CaLoGR) which was not associated with promoter methylation. Treatment with hydralazine reversed gemcitabine resistance and led to hENT1 and dCK gene reactivation in a DNA promoter methylation-independent manner. No changes in HDAC total activity nor in H3 and H4 acetylation at these promoters were observed. ChIP analysis showed H3K9m2 at hENT1 and dCK gene promoters which correlated with hyper-expression of G9A histone methyltransferase at RNA and protein level in the resistant cells. Hydralazine inhibited G9A methyltransferase activity in vitro and depletion of the G9A gene by iRNA restored gemcitabine sensitivity. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that acquired gemcitabine resistance is associated with DNA promoter methylation-independent hENT1 and dCK gene down-regulation and hyper-expression of G9A methyltransferase. Hydralazine reverts gemcitabine resistance in cervical cancer cells via inhibition of G9A histone methyltransferase
    corecore